GAN-Based Data Augmentation and Anonymization for Skin-Lesion Analysis: A Critical Review

Alceu Bissoto¹, Eduardo Valle², Sandra Avila¹

¹Institute of Computing ²School of Electrical and Computing Engineering
RECOD Lab., University of Campinas (UNICAMP), Brazil
GAN-based augmentation is a method to mitigate the lack of data
GAN-based augmentation is a method to mitigate the lack of data
Preliminary experiments did not reliably improve performance

What are we doing wrong?

• Systematic Literature Review on GAN-based augmentation in the medical context.

• What did we learn?

Skin Lesion Synthesis with Generative Adversarial Networks

Alceu Bissoto¹, Fábio Perez², Eduardo Valle², and Sandra Avila¹

¹RECOD Lab, IC, University of Campinas (Unicamp), Brazil
²RECOD Lab, DCA, FECC, University of Campinas (Unicamp), Brazil

Abstract. Skin cancer is by far the most common type of cancer. Early detection is the key to increase the chances for successful treatment significantly. Currently, Deep Neural Networks are the state-of-the-art results on automated skin cancer classification. To push the results further, we focus on the research on skin lesion synthesis.
Optimize on test set

Weak Baselines

Ignore performance fluctuations

Sampling of synthetic data
Choosing hyperparameters directly on the test-set

[Diagram]

- Test-set
- GAN-Augmented
- Predictions

Hyperparameter decision

×
GAN-augmented models are more thoroughly optimized ✗

Weak Baselines
Ignoring performance fluctuations
Are the **sampling method** and the **amount of synthetic images** key factors for GAN-based augmentation?
Methods

Our work evolved to a critical analysis of GAN-based augmentation
Augmentation vs. **Anonymization**

- GAN → CNN
- GAN → CNN

- GAN → CNN
- GAN → CNN
We consider different GANs
Both translation and noise-based
We evaluate different **sampling methods**

- **random**
- **best**
 - sorted according to CNN scores
- **worst**
 - sorted according to CNN scores
- **diverse**
 - pHash-based removal of near duplicates
We sample different ratios of real and synthetic

real
14.805 images from ISIC 2019

synthetic
(14.805 / 2) images generated with a GAN
We sample different ratios of real and synthetic images.

Real:
- 14,805 images from ISIC 2019

Synthetic:
- 1:1:1 ratio
- Real : Synthetic : Synthetic
- Benign : Malignant
All models are trained under the same design

To select the best training checkpoint for the GAN, we consider both the time spend on training and the FID score.

<table>
<thead>
<tr>
<th>GAN Architecture</th>
<th>Epochs</th>
<th>FID ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPADE</td>
<td>300</td>
<td>16.62</td>
</tr>
<tr>
<td>pix2pixHD</td>
<td>400</td>
<td>19.27</td>
</tr>
<tr>
<td>PGAN</td>
<td>890</td>
<td>39.57</td>
</tr>
<tr>
<td>StyleGAN2</td>
<td>565</td>
<td>15.98</td>
</tr>
</tbody>
</table>
All models are trained under the same design

To select the best training checkpoint for the GAN, we consider both the time spend on training and the FID score.

We perform early stopping based on the validation loss.
We apply conventional data augmentation to all experiments (both during train and test).

To select the best training checkpoint for the GAN, we consider both the time spend on training and the FID score.

We perform early stopping based on the validation loss.

All models are trained under the same design.
All models are trained under the same design

To select the best training checkpoint for the GAN, we consider both the time spend on training and the FID score.

We perform early stopping based on the validation loss.

We apply conventional data augmentation to all experiments (both during train and test).

We evaluate our models in 5 different test sets.
All models are trained under the same design

To select the best training checkpoint for the GAN, we consider both the time spent on training and the FID score.

We perform early stopping based on the validation loss.

We apply conventional data augmentation to all experiments (both during train and test).

We evaluate our models in 5 different test sets.

For statistical significance, we run our experiments 10 times.
Results

GAN-based augmentation did not reliably improve performance *(with some exceptions)*
GAN-based augmentation on in-distribution test did not reliably improve performance.
GAN-based augmentation on out-of-distribution test improved performance
GAN-based anonymization on in-distribution test did not reliably improve performance
GAN-based anonymization on out-of-distribution test improved performance
Takeaway:
Be cautious about evaluation protocols
Thank you!

Alceu Bissoto alceubissoto@ic.unicamp.br
Eduardo Valle dovalle@dca.fee.unicamp.br
Sandra Avila sandra@ic.unicamp.br

Code, Data & Paper:
https://github.com/alceubissoto/gan-critical-review