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§ Natural and artificial artifacts 
§ e.g. hair and gel bubbles

§ Intrinsic factors 
§ e.g. lesion size and shape variations, skin colour and ethnicity as well as ambiguous 

boundaries

§ Variation in imaging conditions 
§ e.g. illumination and viewpoint

Skin Lesion Images Challenges
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§ The quality of dense annotations required for supervised segmentation affected by:

§ Laborious and costly nature of pixel-wise annotations

§ Ambiguous boundaries

§ Annotator bias

§ Inter- and intra-annotator disagreements even amongst experts

Annotation Challenges
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§ The quality of dense annotations required for supervised segmentation affected by:

§ Laborious and costly nature of pixel-wise annotations

§ Ambiguous boundaries

§ Annotator bias

§ Inter- and intra-annotator disagreements even amongst experts

§ Evaluation using manual segmentations outlined by multiple experts is important

§ Goal: avoid single annotator bias by training deep segmentation models to learn from 

multiple annotations as available

Annotation Challenges
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Given a dataset of 𝒳 = {𝑋!}!"#$ images and 

𝑘 annotators labeling different subsets of the images:

𝒴= {{𝑌%!} %"#
&! }!"#$

Problem

𝑀! : number of annotations for 𝑋!
𝑌"! : 𝑚#$ annotation of 𝑋!
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Given a dataset of 𝒳 = {𝑋!}!"#$ images and 

𝑘 annotators labeling different subsets of the images:

𝒴= {{𝑌%!} %"#
&! }!"#$

Problem

Train a segmentation network that generalizes well to unseen data while 
effectively leveraging all annotations toward making reliable predictions



§ Let 𝑀 indicate the maximum number of annotations per image over the 

entire dataset 𝒰.

§ Partition the entire dataset into 𝑀 disjoint subsets denoted by 𝐶' '"#
&

such that each 𝐶' includes at most one annotation for every image
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Approach - Non-contradictory Subsets Selection



§ For each image, with M ≤ 𝑀! annotations, we randomly assign the 𝑀

annotations to 𝐶' '"#
& subsets.
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Approach - Non-contradictory Subsets Selection
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Approach – Learning Models

§ Train 𝑀 base networks where network 𝑖 models the experts knowledge in 𝐶%.



11

Approach – Learning Models

§ To train model 𝑖, leverage non-contradictory subset 𝐶' to assess the 

quality of annotations in 𝒰.

§ Learn spatially-adaptive weight maps for annotations in 𝒰 to adjust how 

to treat each pixel annotation in the optimization of deep network.



§ Specifically, for each model 𝑖, we define a weighted CE loss on the data set 𝒰:

ℒ "𝑌(), 𝑌*(; 𝜃),𝑊*() = )
+

𝑊*(+) 𝑌*( log "𝑌(+)
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Approach – Learning Models



ℒ "𝑌(), 𝑌*(; 𝜃),𝑊*() = )
+

𝑊*(+) 𝑌*( log "𝑌(+)

§ Specifically, for each model 𝑖, we define a weighted CE loss on the data set 𝒰:

𝑊!"#$ is the weight associated with pixel 𝑞 of the 𝑚-th annotation of image 𝑛 in model 𝑖.

𝑊$ contains all spatial weights associated with annotations in set 𝒰 leaned in model 𝑖.
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Approach – Learning Models
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Approach – How to learn W

§ Learn 𝑊' dynamically by evaluating the network on 𝐶'

ℒ = 𝐿!"#
!

𝑊$ = 𝑎𝑟𝑔𝑚𝑖𝑛%!ℒ
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Approach – How to learn W

§ Learn 𝑊' dynamically by evaluating the network on 𝐶'

ℒ = 𝐿!"#
!

𝑊$ = 𝑎𝑟𝑔𝑚𝑖𝑛%!ℒ

§ Learn network parameters  𝜃' and weight maps 𝑊', alternatively.
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Approach - Fusion of Predictions

§ Once the individual base models are trained, the final prediction of the 

entire ensemble for the 𝑋! is obtained by using a weighted fusion

!𝑌' =$
()*

+

𝛼'( !𝑌'(
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Approach - Fusion of Predictions

§ Once the individual base models are trained, the final prediction of the 

entire ensemble for the 𝑋! is obtained by using a weighted fusion

where        is the combination coefficient for prediction by model 𝑖 defined by 

either:

§ Equally weighted averaging

§ Model confidence

𝛼()

!𝑌' =$
()*

+

𝛼'( !𝑌'(
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Approach - Uncertainty-driven Aggregation

§ Leverage aleatoric uncertainty to estimate how confident a base model is 

about its prediction in two forms:

§ Considering the pixel-wise uncertainty values as spatially adaptive 

coefficients

§ Averaging the pixel-wise uncertainty into a scalar image-level coefficient.
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Approach - Uncertainty-driven Aggregation

§ Utilize the confidence coefficients when combining the base models 

prediction maps
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Data Description - Training

§ The International Skin Imaging Collaboration (ISIC) Archive data

§ 2,223 images with more than one segmentation ground truth mask

§ Split images to 80% for training and 20% for validation

number of 
annotations

2 3 4 5

number of 
images

2094 100 36 3
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Data Description - Training

§ For model selection, we randomly selected which annotation to use in the 

validation set.

§ Create non-contradictory annotation sets: all training data are randomly 

and uniformly partitioned into five groups of overlapping images but 

unique ground truth annotations
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Data Description - Training

Sample skin lesion images from the ISIC Archive with multiple 
lesion boundary annotations
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Data Description - Test

§ Evaluate the proposed framework on three publicly available datasets:

§ ISIC: 2,000 images with just one segmentation ground truth from 

ISIC Archive 

§ PH2: The PH2 dataset contains 200 color dermoscopic images

§ DermoFit: This dataset has 1300 color clinical
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Quantitative Results – Segmentation Performance

Comparing the segmentation performance based on Jaccard index
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Quantitative Results – Segmentation Performance

for every image in the training batch, we randomly 
select which ground truth to use, when optimizing 

the loss function.
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Quantitative Results – Segmentation Performance

base models trained on non-contradictory annotations 
simulating an expert knowledge
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Quantitative Results – Segmentation Performance

§ Row G: combined predictions by averaging the output probabilities
§ Row H: predictions fusion using normalized confidence spatial maps 

computed by inverting the predicted aleatoric outputs
§ Row I: fused predictions using image-level normalized confidence scalars 

computed by inverting the uncertainty scalars
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Quantitative Results – Segmentation Performance

A subset of samples with small annotator disagreements is 
taken into account during the training.
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Quantitative Results – Segmentation Performance

Comparing the segmentation performance based on Jaccard index
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§ Modeling predictive uncertainty in clinical applications without a ‘real’ gold 

standard is helpful in decision making

§ Evaluate the calibration quality of our ensemble annotation aggregation by:

§ Negative log-likelihood (NLL) 

§ Brier score (Br) 

§ Implement Bayesian epistemic uncertainty using dropout for base models

Quantitative Results – Predictive Uncertainty 
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Quantitative Results – Predictive Uncertainty 

Predictive uncertainty based on negative log-likelihood (NLL) and Brier score (Br)
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Qualitative Results – Weight Matrices
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Qualitative Results – Weight Matrices

A sample training image and trusted annotations in 
base models 0 to 4.
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Qualitative Results – Weight Matrices

INC: inconsistency maps (absolute differences of ground truth masks) 
between the trusted ground truth in Model 0 and other ground truth
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Qualitative Results – Weight Matrices

Weight maps in iteration 100K overlaid over the 
inconsistency maps (INC+WT)
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Qualitative Results – Weight Matrices

§ The location of the cyan pixels matches the inconsistency maps 
§ Zero or very close to zero weights are assigned to inconsistent annotated pixels
§ Exclusively leveraging the experts knowledge in 𝐶$ when learning 𝜃$
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Summary

§ We proposed an ensemble paradigm to:

§ model different experts’ skills independently 

§ deal with discrepancies in segmentation annotations
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experts’ opinions toward learning from all available annotations.
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Summary

§ We proposed an ensemble paradigm to:

§ model different experts’ skills independently 

§ deal with discrepancies in segmentation annotations

§ A robust-to annotation-noise learning scheme is utilized to efficiently leverage 

experts’ opinions toward learning from all available annotations.

§ To improve quality of predictive uncertainty in clinical applications, aleatoric and 

epistemic uncertainties are modeled and confidence calibration improved.
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Thank you!
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