D-LEMA: Deep Learning Ensembles from Multiple Annotations Application to Skin Lesion Segmentation

Zahra Mirikharaji, Kumar Abhishek, Saeed Izadi, Ghassan Hamarneh

Sixth ISIC Skin Image Analysis Workshop @ CVPR 2021 June 19, 2021

Skin Lesion Images Challenges

- Natural and artificial artifacts
 - e.g. hair and gel bubbles
- Intrinsic factors
 - e.g. lesion size and shape variations, skin colour and ethnicity as well as ambiguous boundaries
- Variation in imaging conditions
 - e.g. illumination and viewpoint

Annotation Challenges

- The quality of dense annotations required for supervised segmentation affected by:
 - Laborious and costly nature of pixel-wise annotations
 - Ambiguous boundaries
 - Annotator bias
 - Inter- and intra-annotator disagreements even amongst experts

Annotation Challenges

- The quality of dense annotations required for supervised segmentation affected by:
 - Laborious and costly nature of pixel-wise annotations
 - Ambiguous boundaries
 - Annotator bias
 - Inter- and intra-annotator disagreements even amongst experts
- Evaluation using manual segmentations outlined by multiple experts is important

Annotation Challenges

- The quality of dense annotations required for supervised segmentation affected by:
 - Laborious and costly nature of pixel-wise annotations
 - Ambiguous boundaries
 - Annotator bias
 - Inter- and intra-annotator disagreements even amongst experts
- Evaluation using manual segmentations outlined by multiple experts is important
- **Goal**: avoid single annotator bias by training deep segmentation models to learn from multiple annotations as available

Problem

Given a dataset of $\mathcal{X} = \{X_n\}_{n=1}^N$ images and

k annotators labeling different subsets of the images:

 $\mathcal{Y} = \{\{Y_{mn}\}_{m=1}^{M_n}\}_{n=1}^N$

Problem

Given a dataset of $\mathcal{X} = \{X_n\}_{n=1}^N$ images and

k annotators labeling different subsets of the images:

$$\mathcal{Y} = \{\{Y_{mn}\}_{m=1}^{M_n}\}_{n=1}^N$$

Train a segmentation network that generalizes well to unseen data while effectively leveraging all annotations toward making reliable predictions

Approach - Non-contradictory Subsets Selection

- Let *M* indicate the maximum number of annotations per image over the entire dataset *U*.
- Partition the entire dataset into *M* disjoint subsets denoted by $\{C^i\}_{i=1}^{M}$ such that each C^i includes at most one annotation for every image

Approach - Non-contradictory Subsets Selection

For each image, with $M \le M_n$ annotations, we randomly assign the *M* annotations to $\{C^i\}_{i=1}^M$ subsets.

9

Train *M* base networks where network *i* models the experts knowledge in C^i .

- To train model *i*, leverage non-contradictory subset C^i to assess the quality of annotations in \mathcal{U} .
- Learn spatially-adaptive weight maps for annotations in U to adjust how to treat each pixel annotation in the optimization of deep network.

Specifically, for each model i, we define a weighted CE loss on the data set \mathcal{U} :

$$\mathcal{L}(\hat{Y}_{n}^{i}, Y_{mn}; \theta^{i}, W_{mn}^{i}) = \sum_{q} W_{mnq}^{i} Y_{mn} \log \hat{Y}_{nq}^{i}$$

Specifically, for each model i, we define a weighted CE loss on the data set \mathcal{U} :

$$\mathcal{L}(\hat{Y}_{n}^{i}, Y_{mn}; \theta^{i}, W_{mn}^{i}) = \sum_{q} W_{mnq}^{i} Y_{mn} \log \hat{Y}_{nq}^{i}$$

 W_{mnq}^{i} is the weight associated with pixel q of the m-th annotation of image n in model i. W^{i} contains all spatial weights associated with annotations in set \mathcal{U} leaned in model i.

Approach - How to learn W

• Learn W^i dynamically by evaluating the network on C^i

$$\mathcal{L} = L_{ce}^{C^{i}}$$

$$W^i = argmin_{W^i}\mathcal{L}$$

Approach - How to learn W

• Learn W^i dynamically by evaluating the network on C^i

$$\mathcal{L} = L_{ce}^{C^i}$$

$$W^i = argmin_{W^i}\mathcal{L}$$

Learn network parameters θ^i and weight maps W^i , alternatively.

Approach - Fusion of Predictions

• Once the individual base models are trained, the final prediction of the entire ensemble for the X_n is obtained by using a weighted fusion

$$\widehat{Y}_n = \sum_{i=1}^M \alpha_n^i \widehat{Y}_n^i$$

Approach - Fusion of Predictions

• Once the individual base models are trained, the final prediction of the entire ensemble for the X_n is obtained by using a weighted fusion

$$\widehat{Y}_n = \sum_{i=1}^M \alpha_n^i \widehat{Y}_n^i$$

where α_n^i is the combination coefficient for prediction by model *i* defined by either:

- Equally weighted averaging
- Model confidence

Approach - Uncertainty-driven Aggregation

- Leverage aleatoric uncertainty to estimate how confident a base model is about its prediction in two forms:
 - Considering the pixel-wise uncertainty values as spatially adaptive coefficients
 - Averaging the pixel-wise uncertainty into a scalar image-level coefficient.

Approach - Uncertainty-driven Aggregation

 Utilize the confidence coefficients when combining the base models prediction maps

Data Description - Training

- The International Skin Imaging Collaboration (ISIC) Archive data
- 2,223 images with more than one segmentation ground truth mask

number of annotations	2	3	4	5
number of images	2094	100	36	3

Split images to 80% for training and 20% for validation

Data Description - Training

- For model selection, we randomly selected which annotation to use in the validation set.
- Create non-contradictory annotation sets: all training data are randomly and uniformly partitioned into five groups of overlapping images but unique ground truth annotations

Data Description - Training

ISIC_0013073 (2 annotations)

ISIC_0000174 (4 annotations)

ISIC 0000056 (3 annotations)

ISIC_0000549 (4 annotations)

ISIC_0009872 (4 annotations)

ISIC_0010183 (5 annotations)

ISIC_0011227 (4 annotations)

ISIC_0000401 (5 annotations)

Sample skin lesion images from the ISIC Archive with multiple lesion boundary annotations

Data Description - Test

- Evaluate the proposed framework on three publicly available datasets:
 - ISIC: 2,000 images with just one segmentation ground truth from ISIC Archive
 - **PH2**: The PH2 dataset contains 200 color dermoscopic images
 - DermoFit: This dataset has 1300 color clinical

	Method	od ISIC Archive [1] PH^2 [26]		DermoFit [2]
Α	baseline	68.00 ± 0.56	81.30 ± 0.77	70.30 ± 0.54
В	model 0	69.22 ± 0.53	82.82 ± 0.75	72.57 ± 0.50
С	model 1	69.75 ± 0.55	82.40 ± 0.75	71.05 ± 0.55
D	model 2	70.33 ± 0.52	83.46 ± 0.74	72.80 ± 0.51
Е	model 3	70.37 ± 0.51	83.31 ± 0.70	73.04 ± 0.53
F	model 4	69.73 ± 0.52	82.29 ± 0.72	70.87 ± 0.48
G	equally weighted fusion (ours)	$\textbf{72.11}{\pm 0.51}$	84.96 ± 0.73	$74.22{\pm}~0.51$
Η	pixel-level confidence (ours)	$71.46 {\pm}~0.49$	$84.52{\pm}~0.74$	$73.91{\pm}~0.53$
Ι	image-level confidence (ours)	$\textbf{72.08}{\pm 0.49}$	$\textbf{85.20} \pm \textbf{0.70}$	$\textbf{74.33}{\pm 0.50}$
J	less is more [30]	69.20	81.25	72.55

	Method	ISIC Archive [1]	PH ² [26]	DermoFit [2]			
A	baseline	68.00 ± 0.56	81.30 ± 0.77	70.30 ± 0.54			
В	model 0	69.22 ± 0.53	82.82 ± 0.75	72.57 ± 0.50			
С	model 1	69.75 ± 0.55	82.40 ± 0.75	71.05 ± 0.55			
D	for every image in the training batch, we randomly ± 0.51						
Е	soloct which around truth to use when optimizing $= 0.53$						
F	the loss function $1000000000000000000000000000000000000$						
G	equally reighted faston (only) in the first of the only of the onl						
Η	pixel-level confidence (ours)	71.46± 0.49	84.52 ± 0.74	73.91 ± 0.53			
Ι	image-level confidence (ours)	72.08± 0.49	$\textbf{85.20} \pm \textbf{0.70}$	74.33±0.50			
J	less is more [30]	69.20	81.25	72.55			

	Method	ISIC Archive [1]	PH^{2} [26]	DermoFit [2]	
A	baseline	68.00 ± 0.56	81.30 ± 0.77	70.30 ± 0.54	
B	model 0	69.22 ± 0.53	82.82 ± 0.75	72.57 ± 0.50	
С	model 1	69.75 ± 0.55	82.40 ± 0.75	71.05 ± 0.55	
D	model 2	70.33 ± 0.52	83.46 ± 0.74	72.80 ± 0.51	
Е	model 3	70.37 ± 0.51	83.31 ± 0.70	73.04 ± 0.53	
F	model 4	69.73 ± 0.52	82.29 ± 0.72	70.87 ± 0.48	
G	equally weighted fusion (ours)	72.11±0.51	<u>84.96±0.73</u>	74.22±0.51	
H	pixel-level confidence (ours)	71.46 ± 0.49	84.52 ± 0.74	73.91 ± 0.53	
Ι	image-le ^a base models tr	ained on non-cor	ntradictory an	notations	
J	les sim	ulating an expert	knowledge		
	A B C D E E H L L	Method A baseline B model 0 C model 1 D model 2 E model 3 F model 4 G equally weighted fusion (ours) H pixel-level confidence (ours) I image-ler J les	MethodISIC Attribute [1]Abaseline 68.00 ± 0.56 Bmodel 0 69.22 ± 0.53 Cmodel 1 69.75 ± 0.55 Dmodel 2 70.33 ± 0.52 Emodel 3 70.37 ± 0.51 Fmodel 4 69.73 ± 0.52 Gequally weighted fusion (ours) 72.11 ± 0.51 Hpixel-level confidence (ours) 71.46 ± 0.49 Iimage-lebase models trained on non-corsinulating an expert	MethodISIC Atenive [I]III [20]Abaseline 68.00 ± 0.56 81.30 ± 0.77 Bmodel 0 69.22 ± 0.53 82.82 ± 0.75 Cmodel 1 69.75 ± 0.55 82.40 ± 0.75 Dmodel 2 70.33 ± 0.52 83.46 ± 0.74 Emodel 3 70.37 ± 0.51 83.31 ± 0.70 Fmodel 4 69.73 ± 0.52 82.29 ± 0.72 Gequally weighted fusion (ours) 72.11 ± 0.51 84.96 ± 0.73 Hpixel-level confidence (ours) 71.46 ± 0.49 84.52 ± 0.74 Iimage-lebase models trained on non-contradictory an simulating an expert knowledge	MethodISIC Attnive [1]ITI [20]Definition [2]Abaseline 68.00 ± 0.56 81.30 ± 0.77 70.30 ± 0.54 Bmodel 0 69.22 ± 0.53 82.82 ± 0.75 72.57 ± 0.50 Cmodel 1 69.75 ± 0.55 82.40 ± 0.75 71.05 ± 0.55 Dmodel 2 70.33 ± 0.52 83.46 ± 0.74 72.80 ± 0.51 Emodel 3 70.37 ± 0.51 83.31 ± 0.70 73.04 ± 0.53 Fmodel 4 69.73 ± 0.52 82.29 ± 0.72 70.87 ± 0.48 Gequally weighted fusion (ours) 72.11 ± 0.51 84.96 ± 0.73 74.22 ± 0.51 Hpixel-level confidence (ours) 71.46 ± 0.49 84.52 ± 0.74 73.91 ± 0.53 Himage-lebase models trained on non-contradictory annotations simulating an expert knowledge

- Row G: combined predictions by averaging the output probabilities
- Row H: predictions fusion using normalized confidence spatial maps computed by inverting the predicted aleatoric outputs
- Row I: fused predictions using image-level normalized confidence scalars computed by inverting the uncertainty scalars

J	less is more [30]	69.20	81.25	72.55
Ι	image-level confidence (ours)	$\textbf{72.08} {\pm 0.49}$	$\textbf{85.20} \pm \textbf{0.70}$	$\textbf{74.33}{\pm 0.50}$
Н	pixel-level confidence (ours)	$71.46 {\pm}~0.49$	$84.52 {\pm}~0.74$	$73.91{\pm}0.53$
G	equally weighted fusion (ours)	$\textbf{72.11}{\pm 0.51}$	84.96 ± 0.73	$74.22{\pm}0.51$
Г	model 4	69.73 ± 0.52	82.29 ± 0.72	70.87 ± 0.48
Е	model 3	70.37 ± 0.51	83.31 ± 0.70	73.04 ± 0.53
D		10.55 ± 0.52	03.40 ± 0.74	12.00 ± 0.01

	Method	ISIC Archive [1]	PH ² [26]	DermoFit [2]	
Α	baseline	68.00 ± 0.56	81.30 ± 0.77	70.30 ± 0.54	
В	model 0	69.22 ± 0.53	82.82 ± 0.75	72.57 ± 0.50	
С	model 1	69.75 ± 0.55	82.40 ± 0.75	71.05 ± 0.55	
D	model 2	70.33 ± 0.52	83.46 ± 0.74	72.80 ± 0.51	
Е	model 3	70.37 ± 0.51	83 31 + 0 70	73.04 ± 0.53	
F	A subset of samples with	small annotator	disagreemen	ts is 7 ± 0.48	
G	taken into acco	ount during the tr	aining.	22 ± 0.51	
Η	pixel-level confidence (ours)	71.46 ± 0.49	84.52 ± 0.74	73.91 ± 0.53	
I	image-level confidence (ours)	72.08+0.49	85.20 ± 0.70	74.33 + 0.50	
J	less is more [30]	69.20	81.25	72.55	

	Method	ISIC Archive [1]	PH ² [26]	DermoFit [2]	
Α	baseline	68.00 ± 0.56	81.30 ± 0.77	70.30 ± 0.54	
В	model 0	69.22 ±0.53	82.82 ± 0.75	72.57 ± 0.50	
С	model 1	69.75 ± 0.55	82.40 ± 0.75	71.05 ± 0.55	
D	model 2	70.33 ± 0.52	83.46 ± 0.74	72.80 ± 0.51	
Е	model 3	70.37 ± 0.51	83.31 ± 0.70	73.04 ± 0.53	
F	model 4	69.73 ± 0.52	82.29 ± 0.72	70.87 ± 0.48	
G	equally weighted fusion (ours)	$\textbf{72.11}{\pm 0.51}$	$84.96 {\pm}~0.73$	$74.22{\pm}0.51$	
Н	pixel-level confidence (ours)	71.46 ± 0.49	84.52 ± 0.74	73.91 ± 0.53	
Ι	image-level confidence (ours)	$\textbf{72.08}{\pm 0.49}$	$\textbf{85.20} \pm \textbf{0.70}$	74.33± 0.50	
J	less is more [30]	69.20	81.25	72.55	

Quantitative Results - Predictive Uncertainty

- Modeling predictive uncertainty in clinical applications without a 'real' gold standard is helpful in decision making
- Evaluate the calibration quality of our ensemble annotation aggregation by:
 - Negative log-likelihood (NLL)
 - Brier score (Br)
- Implement Bayesian epistemic uncertainty using dropout for base models

Quantitative Results - Predictive Uncertainty

Dataset		ISIC A	SIC Archive		H^2	DermoFit	
Method		NLL	Br	NLL	Br	NLL	Br
A	MC dropout model 0	0.073	0.019	0.166	0.048	0.272	0.082
В	MC dropout model 1	0.075	0.020	0.151	0.044	0.310	0.099
C	MC dropout model 2	0.075	0.019	0.149	0.044	0.283	0.087
D	MC dropout model 3	0.078	0.020	0.152	0.042	0.291	0.091
E	MC dropout model 4	0.075	0.019	0.155	0.045	0.312	0.100
F	deep ensemble (ours)	0.070	0.018	0.144	0.041	0.254	0.078

Predictive uncertainty based on negative log-likelihood (NLL) and Brier score (Br)

Model 0

- The location of the cyan pixels matches the inconsistency maps
- Zero or very close to zero weights are assigned to inconsistent annotated pixels

Model 2

Model 3

Model /

• Exclusively leveraging the experts knowledge in C^i when learning θ^i

Model 1

Summary

- We proposed an ensemble paradigm to:
 - model different experts' skills independently
 - deal with discrepancies in segmentation annotations

Summary

- We proposed an ensemble paradigm to:
 - model different experts' skills independently
 - deal with discrepancies in segmentation annotations
- A robust-to annotation-noise learning scheme is utilized to efficiently leverage experts' opinions toward learning from all available annotations.

Summary

- We proposed an ensemble paradigm to:
 - model different experts' skills independently
 - deal with discrepancies in segmentation annotations
- A robust-to annotation-noise learning scheme is utilized to efficiently leverage experts' opinions toward learning from all available annotations.
- To improve quality of predictive uncertainty in clinical applications, aleatoric and epistemic uncertainties are modeled and confidence calibration improved.

Thank you!

Acknowledgments

zmirikha@sfu.ca www.MedicalImageAnalysis.com

