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Skin Lesion Images Challenges

®  Natural and artificial artifacts
®  e.g. hair and gel bubbles

® |ntrinsic factors

®  e.g. lesion size and shape variations, skin colour and ethnicity as well as ambiguous
boundaries
® Variation in imaging conditions
]

e.g. illumination and viewpoint
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Annotation Challenges

®  The quality of dense annotations required for supervised segmentation affected by:

®  Laborious and costly nature of pixel-wise annotations
®  Ambiguous boundaries
®  Annotator bias

® Inter- and intra-annotator disagreements even amongst experts
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Annotation Challenges

®  The quality of dense annotations required for supervised segmentation affected by:
®  Laborious and costly nature of pixel-wise annotations
®  Ambiguous boundaries

®  Annotator bias

® Inter- and intra-annotator disagreements even amongst experts
®  Evaluation using manual segmentations outlined by multiple experts is important
®  Goal: avoid single annotator bias by training deep segmentation models to learn from

multiple annotations as available



Problem

Given a dataset of X = {X,,}IY_, images and

k annotators labeling different subsets of the images:
Y= {Ymn} it =1
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Problem

Given a dataset of X = {X,,}IY_, images and

k annotators labeling different subsets of the images:
Y= {Ymn} it =1

{

Train a segmentation network that generalizes well to unseen data while
effectively leveraging all annotations toward making reliable predictions



Approach - Non-contradictory Subsets Selection

® Let M indicate the maximum number of annotations per image over the

entire dataset U.

" Partition the entire dataset into M disjoint subsets denoted by {C"}Il.w=1

such that each C! includes at most one annotation for every image



Approach - Non-contradictory Subsets Selection

" For each image, with M < M,, annotations, we randomly assign the M

annotations to {C"}?il subsets.

U2
:[_]QQ
#go |




Approach - Learning Models
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Train M base networks where network i models the experts knowledge in C*.
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Approach - Learning Models

" To train model i, leverage non-contradictory subset C* to assess the

quality of annotations in U.

® Learn spatially-adaptive weight maps for annotations in ‘U to adjust how

to treat each pixel annotation in the optimization of deep network.
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]
Approach - Learning Models

" Spedcifically, for each model i, we define a weighted CE loss on the data set U:

L(?ﬁ.: Yimns Hi» Wnlm) = 2 Wnl;mq Yimn log Yrﬁq
q
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]
Approach - Learning Models

" Spedcifically, for each model i, we define a weighted CE loss on the data set U:

L(T Youns 0% Whin) = ) [WoinglVnn log Vg
q

Wnllmq is the weight associated with pixel g of the m-th annotation of image n in model i.

W' contains all spatial weights associated with annotations in set U leaned in model i.
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]
Approach - How to learn W

" |Learn W' dynamically by evaluating the network on C!
_ qCt

AN argmin,, i L
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]
Approach - How to learn W

" |Learn W' dynamically by evaluating the network on C!
_ qCt

AN argmin,, i L

" [earn network parameters ' and weight maps W, alternatively.
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Approach - Fusion of Predictions

® Once the individual base models are trained, the final prediction of the

entire ensemble for the X, is obtained by using a weighted fusion

M
YTl _ g anYn
=1
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Approach - Fusion of Predictions

® Once the individual base models are trained, the final prediction of the

entire ensemble for the X, is obtained by using a weighted fusion

M
YTl _ g anYn
=1

where a1i1 is the combination coefficient for prediction by model i defined by
either:

® Equally weighted averaging

®  Model confidence
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Approach - Uncertainty-driven Aggregation

® Leverage aleatoric uncertainty to estimate how confident a base model is

about its prediction in two forms:

® Considering the pixel-wise uncertainty values as spatially adaptive

coefficients

®  Averaging the pixel-wise uncertainty into a scalar image-level coefficient.
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Approach - Uncertainty-driven Aggregation

" Utilize the confidence coefficients when combining the base models
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Data Description - Training

® The International Skin Imaging Collaboration (ISIC) Archive data

" 2,223 images with more than one segmentation ground truth mask

number of
annotations

number of 2094
images

" Split images to 80% for training and 20% for validation

20



Data Description - Training

®  For model selection, we randomly selected which annotation to use in the
validation set.

® Create non-contradictory annotation sets: all training data are randomly
and uniformly partitioned into five groups of overlapping images but

unique ground truth annotations
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Data Description - Training

ISIC_0013073 (2 annotations) ISIC_0000056 (3 annotations) ISIC_0009872 (4 annotations) ISIC_0011227 (4 annotations)

L

ISIC_0000174 (4 annotations) ISIC_0000549 (4 annotations) ISIC_0010183 (5 annotations)

Sample skin lesion images from the ISIC Archive with multiple
lesion boundary annotations
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Data Description - Test

® Evaluate the proposed framework on three publicly available datasets:

" ISIC: 2,000 images with just one segmentation ground truth from
ISIC Archive

®" PH2: The PH2 dataset contains 200 color dermoscopic images

" DermoFit: This dataset has 1300 color clinical
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Method ISIC Archive [1] | PH? [26] | DermoFit[2]
A baseline 68.00 £+ 0.56 81.30 £ 0.77 | 70.30 + 0.54
B model 0 69:22. 1+0.53 8282 +0.75 | 7257 =050
C model 1 69.75 £0.55 82.40 £0.75 | 71.05 £0.55
D model 2 19331052 83.46 +0.74 | 72.80 £+ 0.51
B model 3 70.37 £ 0.51 83.31 £0.70 | 73.04 £0.53
F model 4 6973 £8.52 82.29 £0.72 | 70.87 +0.48
G | equally weighted fusion (ours) 72.11+ 0.51 84.96+ 0.73 | 74.22+ 0.51
H pixel-level confidence (ours) 71.46+ 0.49 84.52+0.74 | 73.91+£0.53
I image-level confidence (ours) 72.08+ 0.49 85.20 = 0.70 | 74.33+ 0.50
J less is more [30] 69.20 81.25 92:55

Comparing the segmentation performance based on Jaccard index

Quantitative Results - Segmentation Performance
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Quantitative Results - Segmentation Performance

Methad ISIC Archive [1] PL2 o] Dermobit [ D]

A baseline 68.00 £ 0.56 | 81.30 £0.77 | 70.30 & 0.54

B model 0 069.22 £0.53 8282 £ 0.75 | 12.57 £ 0.50

C model 1 69.754+0.55 | 82.40 +£0.75 | 71.05 4 0.55

D : : . 0.51

s for every image in the training batch, we randomly 05

select which ground truth to use, when optimizing S

F ) 0.48

the loss function.

G | equ - ‘ L . 0.51

H pixel-level confidence (ours) 71.46+ 0.49 84.52+ 0.74 391+ 0.53

I image-level confidence (ours) 72.08+ 0.49 85.20 £0.70 | 74.33+ 0.50
J less 1s more [30] 69.20 81.25 72.55
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)

simulating an expert knowledge

base models trained on non-contradictory annotations

Method ISIC Archive [1] PH~ [26] DermoFit []
A Dascline 03.00 £ U.00 31.30 £ U.77 | 70.30 £ 0.5%
B model 0 69.22 +0.53 8282 Q.73 | 1237 =050
C model 1 6915 12035 82.40 £0.75 | 71.05 £ 0.55
D model 2 S5 0.52 83.46 £0.74 | 72.80 £ 0.51
E model 3 70.37 £0.51 83.31 £0.70 | 73.04 £ 0.53
F model 4 6913 = 0.52 82.29 £0.72 | 70.87 = 0.48
el phiedbusionlonie, e e e
H pixel-level confidence (ours) 71.46+ 0.49 84.52+ 0.74 391+ 0.53
|
J

Quantitative Results - Segmentation Performance

26



il
Quantitative Results - Segmentation Performance

Row G: combined predictions by averaging the output probabilities
Row H: predictions fusion using normalized confidence spatial maps
computed by inverting the predicted aleatoric outputs

Row [: fused predictions using image-level normalized confidence scalars
computed by inverting the uncertainty scalars

model 3 70.37 £ 0.51 83.31 £0.70 | 73.04 £ 0.53

foder & T T3 T 0.52 8229 T U.72 | 1087 £ U.48

equally weighted fusion (ours) 72.11+ 0.51 84.96+ 0.73 | 74.224+0.51
pixel-level confidence (ours) 71.46+ 0.49 84.524+0.74 | 73.91+ 0.53

image-level confidence (ours) 72.08+ 0.49 85.20 = 0.70 | 74.33+ 0.50

‘ less 1s more [30] ‘ 69.20 ‘ 81.25 ] 72.55 ‘

~| =T Q|y| o]
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Quantitative Results - Segmentation Performance

Method ISIC Archive [ 1] PH? [26] DermokFit [2]
A baseline 68.00 £+ 0.56 81.30 £0.77 | 70.30 £ 0.54
B model 0 69.22 +0.53 82.82 +£0.75 | 72.57 £ 0.50
C model 1 69.75 £+ 0.55 82.40 +0.75 | 71.05 £ 0.55
D model 2 70.33 + 0.52 83.46 £0.74 | 72.80 £ 0.51
E 3 3 4 4+ 0.53
S A subset of samples with small annotator disagreements is [gEE=IRES
G taken into account during the training. 12+ 0.51
H pixel-level confidence (ours) 71.46+ 0.49 84.52+0.74 | 73.91£0.53
| image-level confidence (onrs) 72 084+ 049 85.20 4 0.70 74 334+ 0.50
J less is more [30] 69.20 S1.25 72:55
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Method ISIC Archive [1] | PH?[26] | DermoFit [2]
A baseline 68.00 + 0.56 81.30 £0.77 | 70.30 4+ 0.54
B model 0 69.22:+0.53 8282 Q.75 | 7257 =0.50
C model 1 69.75 £+ 0.55 82.40 £0.75 | 71.05 & 0.55
D model 2 1058052 83.46 £0.74 | 72.80 £ 0.51
E model 3 70.37 £ 0.51 83.31 £0.70 | 73.04 +0.53
F model 4 69.73 + 0.52 82.29 £0.72 | 70.87 +0.48
G | equally weighted fusion (ours) 72.11+ 0.51 84.96+ 0.73 | 74.22+ 0.51
H nixel-level confidence (ours) 71 .46+ 049 R4 524074 739140573
I image-level confidence (ours) 72.08+ 0.49 85.20 +0.70 | 74.33+ 0.50
J less is more [30] 69.20 81.25 s

Comparing the segmentation performance based on Jaccard index

Quantitative Results - Segmentation Performance
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Quantitative Results - Predictive Uncertainty

® Modeling predictive uncertainty in clinical applications without a ‘real’ gold

standard is helpful in decision making

® Evaluate the calibration quality of our ensemble annotation aggregation by:
® Negative log-likelihood (NLL)
" Brier score (Br)

" Implement Bayesian epistemic uncertainty using dropout for base models
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Quantitative Results - Predictive Uncertainty

Dataset ISIC Archive PH? DermoFit

Method NLL Br NLL Br NLL Br
MC dropout model 0 | 0.073 | 0.019 | 0.166 | 0.048 | 0.272 | 0.082
MC dropout model 1 | 0.075 | 0.020 | 0.151 | 0.044 | 0.310 | 0.099
MC dropout model 2 | 0.075 | 0.019 | 0.149 | 0.044 | 0.283 | 0.087
MC dropout model 3 | 0.078 | 0.020 | 0.152 | 0.042 | 0.291 | 0.091
MCdropoutmaodeld 0075 0010 [ Q1SS L 0045 0312 0100
deep ensemble (ours) | 0.070 | 0.018 | 0.144 | 0.041 | 0.254 | 0.078
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Predictive uncertainty based on negative log-likelihood (NLL) and Brier score (Br)
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Qualitative Results - Weight Matrices

Model 0 Model 1 Model 2 Model 3 Model 4
4
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Qualitative Results - Weight Matrices

Model 0 Model 1 Model 2 Model 3
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Model 4
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A sample training image and trusted annotations in

base models 0 to 4.
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Qualitative Results - Weight Matrices

INC: inconsistency maps (absolute differences of ground truth masks)

between the trusted ground truth in Model 0 and other ground truth
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Qualitative Results - Weight Matrices

Weight maps in iteration 100K overlaid over the

inconsistency maps (INC+WT)
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Qualitative Results - Weight Matrices

» The location of the cyan pixels matches the inconsistency maps
= Zero or very close to zero weights are assigned to inconsistent annotated pixels

= Exclusively leveraging the experts knowledge in C' when learning 6°
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Summary

®  We proposed an ensemble paradigm to:
" model different experts’ skills independently

® deal with discrepancies in segmentation annotations
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]
Summary

®  We proposed an ensemble paradigm to:

" model different experts’ skills independently
® deal with discrepancies in segmentation annotations

A robust-to annotation-noise learning scheme is utilized to efficiently leverage

experts’ opinions toward learning from all available annotations.

To improve quality of predictive uncertainty in clinical applications, aleatoric and

epistemic uncertainties are modeled and confidence calibration improved.
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