Can Self-Training Identify Suspicious Ugly Duckling Lesions?

Mohammadreza Mohseni¹, ², Jordan Yap², William Yolland², Arash Koochek⁴, M Stella Atkins¹, ², ³

¹ School of Computing Science, Simon Fraser University  
² MetaOptima Technology Inc  
³ Department of Skin Science and Dermatology, University of British Columbia  
⁴ Banner Health
What is an Ugly Duckling?

Ugly Duckling (UD) is the lesion (or lesions) that looks different from other lesions in its proximity. The difference can be in:

A. Size
B. Shape
C. Color
Why is Ugly Duckling Sign Important?

Based on previous research:

Ugly Duckling Sign \(\leftrightarrow\) Has Correlation With \(\rightarrow\) Existence of Malignant Melanoma

Allows faster decisions when making diagnosis from visual inspection of:

- Patients
- Photos
An Outlier Detection Problem

We can model ugly duckling detection problem as an outlier detection problem. Ugly duckling lesions are visually outliers by definition. We identify the outlier lesions, by incorporating a variational autoencoder (VAE).

Given an image of a single lesion as input, VAE is asked to reconstruct the same image in the output. Previous work has shown that VAEs can't reconstruct anomalous (outlier) samples well, leading to high reconstruction loss on those samples.
Our Initial Approach - Pipeline

- **Detection**
  - ResNet-18 backbone with Feature Pyramid Network

- **Extraction**
  - Center-cropping 64x64 patches per each lesion

- **Outlier Detection**
  - Variational Autoencoder
Our Initial Approach - Ugly Duckling Detection

In order to detect Ugly duckling lesions, we initially:

1. Extracted all of the lesions from a Total Body Photography (TBP) image
2. Self-Trained a Variational Autoencoder on all of the extracted lesions
3. Selected items with high reconstruction loss as ugly duckling lesions

However, there were two major limitations of this approach:

- Lighting conditions and surrounding area of the lesions played a huge role in our predictions
- Training the variational autoencoder for each TBP image increased the response time for each query to 2 minutes.
Improving the Results

- We added a segmentation module to our pipeline, which greatly reduced the amount of noise in our result (e.g. shadow and lesion location noise).
- We found that by self-training the VAE on 300 unlabelled TBP images, we can greatly reduce the training time.
- Additionally, we found that by using feature-vector distances instead of reconstruction loss, produced better results for the algorithm.
Our Approach - Adding Segmentation Module

Detection

- ResNet-18 backbone with Feature Pyramid Network

Extraction

- Center-cropping 64x64 patches per each lesion

Segmentation

- Smaller variant of U-Net

Outlier Detection

- Variational Autoencoder
Qualitative Results for Patient #1

The numbers above each mole are showing how different it looks from the others. The upper left has the highest value and bottom right has the smallest value.
Qualitative Results for Patient #2
Evaluation Data

We evaluated our algorithm on 75 TBP images. Each lesion in a TBP image is labelled as either “Ugly Duckling” or not, by a board certified dermatologist.
Quantitative Evaluation

We report our algorithm’s performance by two major types of metrics:

● Ranking based metrics
  ○ Mean Average Precision (MAP)
  ○ Mean Reciprocal Rank (MRR)
  ○ 3-Agreement and 7-Agreement

● Binary Classification based metrics
  ○ Accuracy
  ○ Sensitivity
  ○ Specificity
Evaluation - Ranking Based Metrics

For the meaningful calculation of ranking based metrics, we used a subset of TBP images which contained at least one ugly duckling.

<table>
<thead>
<tr>
<th>MAP</th>
<th>MRR</th>
<th>Top-3 Agreement</th>
<th>Top-7 Agreement</th>
<th>Support Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.659</td>
<td>0.721</td>
<td>86.79%</td>
<td>94.34%</td>
<td>53</td>
</tr>
</tbody>
</table>
In order to obtain binary predictions from ranking, we applied a threshold to the calculated distances. Any lesion with distance above the threshold was predicted as ugly duckling.

\[ \text{threshold} = \text{mean}(\text{distances}) + \min \left\{ \frac{\text{mean}(\text{distances})}{\text{std}(\text{distances})} \right\} \]

<table>
<thead>
<tr>
<th>Metric</th>
<th>Micro (Calculated over all lesions in all TBP images)</th>
<th>Macro (Averaged over all TBP images)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>94.16 %</td>
<td>94.23 %</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>72.07 %</td>
<td>71.91 %</td>
</tr>
<tr>
<td>Specificity</td>
<td>94.70 %</td>
<td>94.95 %</td>
</tr>
</tbody>
</table>

Macro sensitivity is calculated only on the TBP images with at least one ugly duckling lesion.
Summary

In this work we showed that:

✓ Ugly duckling lesions can be accurately identified from TBP images with the help of self-training
✓ We evaluated our work against 75 images from two data sources
✓ We presented two types of metrics for evaluation of ugly duckling detection algorithms
Future Work

- Using the result of our work to enhance the performance of Melanoma detection from TBP images
- Investigating if features extracted by the VAE are correlated with size, shape, and color of the lesions
- Investigating the effect of replacing the features extracted by VAE with hand crafted features
- Publishing a large public dataset for better evaluation of such algorithms
References


Thank you for your attention!

Contact us:
Mohammadreza Mohseni: mmohseni@sfu.ca
Jordan Yap: jordanjyap@gmail.com
William Yolland: william@metaoptima.com
Arash Koochek: arash.koochek@bannerhealth.com
M Stella Atkins: stella@sfu.ca